Гравитационная система отопления плюсы и минусы

Содержание

  1. Теоретическая подковка – как работает самотек
  2. Гравитационная система отопления
  3. Классическое двухтрубное гравитационное отопление
  4. Прокладка трубопровода при гравитационном отоплении
  5. Движение охлажденного теплоносителя
  6. Расположение подающего трубопровода
  7. Расположение радиаторов
  8. Гравитационное отопление — замена воды на антифриз
  9. Зачем нужен обратный клапан?
  10. Разновидности обратного клапана
  11. Приспособления дискового типа
  12. Шаровые обратные клапаны
  13. Лепестковая разновидность затвора
  14. Оборудование подъемного типа
  15. Использование открытого расширительного бака
  16. Использование циркуляционного насоса в гравитационном отоплении
  17. Принцип действия ГСО
  18. Монтажная схема
  19. Виды обратных клапанов
  20. Тарельчатый
  21.  Шаровой, или гравитационный
  22.  Лепестковый
  23. Двустворчатый
  24. Подъемный
  25. область применения.
  26. Муфтовые
  27. Фланцевые
  28. Межфланцевые
  29. Сварные
  30. Материал
  31. Монтаж
  32. Усовершенствование
  33. Преимущества и недостатки ГСО
  34. Принцип работы гравитационной системы отопления.
  35. Как устроена гравитационная система отопления.
  36. Расчет параметров гравитационной системы отопления.
  37. Выбор труб для гравитационной системы отопления.
  38. Особенности и принципы работы системы
  39. Монтаж
  40. Какие трубы использовать?
  41. Виды гравитационной системы отопления
  42. Рекомендации для данной системы
  43. Принцип работы гравитационной системы отопления частного дома
  44. Самотечное отопление плюсы гравитационной системы отопления
  45. Упрощенный вариант системы отопления с естественной циркуляцией теплоносителя
  46. Основные схемы для отопления домов
  47. На что нужно обратить внимание при проектировании гравитационной системы отопления
Содержание
  1. Теоретическая подковка – как работает самотек
  2. Гравитационная система отопления
  3. Классическое двухтрубное гравитационное отопление
  4. Прокладка трубопровода при гравитационном отоплении
  5. Движение охлажденного теплоносителя
  6. Расположение подающего трубопровода
  7. Расположение радиаторов
  8. Гравитационное отопление — замена воды на антифриз
  9. Зачем нужен обратный клапан?
  10. Разновидности обратного клапана
  11. Приспособления дискового типа
  12. Шаровые обратные клапаны
  13. Лепестковая разновидность затвора
  14. Оборудование подъемного типа
  15. Использование открытого расширительного бака
  16. Использование циркуляционного насоса в гравитационном отоплении
  17. Принцип действия ГСО
  18. Монтажная схема
  19. Виды обратных клапанов
  20. Тарельчатый
  21.  Шаровой, или гравитационный
  22.  Лепестковый
  23. Двустворчатый
  24. Подъемный
  25. область применения.
  26. Муфтовые
  27. Фланцевые
  28. Межфланцевые
  29. Сварные
  30. Материал
  31. Монтаж
  32. Усовершенствование
  33. Преимущества и недостатки ГСО
  34. Принцип работы гравитационной системы отопления.
  35. Как устроена гравитационная система отопления.
  36. Расчет параметров гравитационной системы отопления.
  37. Выбор труб для гравитационной системы отопления.
  38. Особенности и принципы работы системы
  39. Монтаж
  40. Какие трубы использовать?
  41. Виды гравитационной системы отопления
  42. Рекомендации для данной системы
  43. Принцип работы гравитационной системы отопления частного дома
  44. Самотечное отопление плюсы гравитационной системы отопления
  45. Упрощенный вариант системы отопления с естественной циркуляцией теплоносителя
  46. Основные схемы для отопления домов
  47. На что нужно обратить внимание при проектировании гравитационной системы отопления

Теоретическая подковка – как работает самотек

Естественная циркуляция воды в системах отопления функционирует благодаря гравитации. Как это происходит:

  1. Берем открытый сосуд, наполняем водой и начинаем подогревать. Самый примитивный вариант – кастрюля на газовой плите.
  2. Температура нижнего слоя жидкости растет, плотность уменьшается. Вода становится легче.
  3. Под воздействием притяжения верхний более тяжелый слой опускается на дно, вытесняя менее плотную горячую воду. Начинается естественная циркуляция жидкости, называемая конвекцией.

Справка. Зависимость плотности воды от температуры – не линейная. Чем сильнее греется жидкость, тем быстрее снижается ее плотность, что хорошо заметно на графике.

Пример: если нагревать 1 м³ воды от 50 до 70 градусов, он станет легче на 10.26 кг (ниже смотрим таблицу плотностей при различных температурах). Если продолжить нагрев до 90 °С, то куб жидкости потеряет уже 12.47 кг, хотя дельта температур осталась прежней – 20 °C. Вывод: чем ближе вода к точке кипения, тем активнее происходит циркуляция.

Аналогичным образом теплоноситель циркулирует самотеком по домашней сети теплоснабжения. Подогреваемая котлом вода теряет вес и выталкивается кверху остывшим теплоносителем, вернувшимся из радиаторов. Скорость течения при перепаде температур 20–25 °C составляет всего 0.1…0.25 м/с против 0.7…1 м/с в современных насосных системах.

Малая скорость движения жидкости по магистралям и приборам отопления вызывает такие последствия:

  1. Батареи успевают отдать больше тепла, а теплоноситель – остыть на 20–30 °C. В обычной отопительной сети с насосом и мембранным расширительным баком температура падает на 10–15 градусов.
  2. Соответственно, котел должен производить больше тепловой энергии после запуска горелки. Держать генератор на температуре 40 °C бессмысленно – течение замедлится до предела, батареи станут холодными.
  3. Чтобы доставить до радиаторов потребное количество тепла, надо увеличить проходное сечение труб.
  4. Фитинги и арматура с высоким гидравлическим сопротивлением способны ухудшить либо вовсе остановить самотек. Сюда относятся обратные и трехходовые клапаны, резкие повороты на 90° и сужения труб.
  5. Шероховатость внутренних стенок трубопроводов не играет большой роли (в разумных пределах). Маленькая скорость жидкости – невысокое сопротивление от трения.
  6. Котел на твердом топливе + самотечная система отопления может спокойно работать без теплоаккумулятора и смесительного узла. Благодаря медленному течению воды конденсат в топливнике не образуется.

Как видите, в конвекционном движении теплоносителя присутствуют положительные и отрицательные моменты. Первые следует использовать, вторые – минимизировать.

Watch this video on YouTube

Гравитационная система отопления

Гравитационная система отопления была изобретена в 1777 г. французским физиком Боннеманом (Bonneman) и предназначалась для обогрева инкубатора.

Но только с 1818 г., гравитационная система отопления стала повсеместно применяться в Европе, правда пока только для теплиц и оранжерей. В 1841 году англичанин Гудом (Hood) разработал методику теплового и гидравлического расчета систем с естественной циркуляцией. Ему удалось теоретически доказать пропорциональность скоростей циркуляции теплоносителя квадратным корням из разницы высот центра нагрева и центра охлаждения, то есть перепада высот между котлом и радиатором. Естественная циркуляция теплоносителя в системах отопления была достаточно хорошо изучена и имела мощную теоретическое обоснование.

Но с появлением насосных отопительных систем интерес ученых к гравитационной системе отопления неуклонно угасал.
В настоящее время, гравитационное отопление поверхностно освещают в институтских курсах, что привело к неграмотности специалистов, осуществляющих монтаж данной системы отопления. Стыдно сказать, но монтажники, строящие гравитационное отопление в основном используют советы «бывалых» да те скупые требования, которые изложены в нормативных документах. Стоит помнить, что нормативные документы только диктуют требования и не дают объяснение причин появления того или иного явления. В связи с этим в среде специалистов бытует достаточное количество заблуждений, которые и хотелось немного развеять.

Классическое двухтрубное гравитационное отопление

Для того, чтобы понять принцип работы гравитационной системы отопления, рассмотрим пример классической двухтрубной гравитационной системы, со следующими исходными данными:

  • начальный объем теплоносителя в системе – 100 литров;
  • высота от центра котла до поверхности нагретого теплоносителя в баке Н = 7 м;
  • расстояние от поверхности нагретого теплоносителя в баке до центра радиатора второго яруса h1 = 3 м,
  • расстояние до центра радиатора первого яруса h2 = 6 м.
  • Температура на выходе из котла – 90 °С, на входе в котел – 70 °C.

Действующее циркуляционное давление для радиатора второго яруса можно определить по формуле:

Δp2 = (ρ2 – ρ1) · g · (H – h1) = (977 – 965) · 9,8 · (7 – 3) = 470,4 Па.

Для радиатора первого яруса оно составит:

Δp1 = (ρ2 – ρ1) · g · (H – h1) = (977 – 965) · 9,8 · (7 – 6) =117,6 Па.

Чтобы расчет получился более точным, необходимо учесть остывание воды в трубопроводах.

Прокладка трубопровода при гравитационном отоплении

Многие специалисты считают, что прокладка трубопровода должна происходить с уклоном по направлению движения теплоносителя. 
Не спорю, что в идеале так и должно быть, но на практике это требование не всегда удается выполнить. Где-то балка мешает, где-то потолки сделаны в разных уровнях. Что же будет, если смонтировать подающий трубопровод с обратным уклоном?

Уверен, что ничего страшного не произойдет. Циркуляционное давление теплоносителя, если и снизится, то совсем на небольшую величину (несколько паскалей).
Произойдет это за счет паразитного влияния, остывающего в верхнем розливе теплоносителя. При такой конструкции воздух из системы придется удалять с помощью проточного воздухосборника и воздухоотводчика. Такое устройство показано на рисунке. Здесь дренажный кран предназначен для выпуска воздуха в момент заполнения системы теплоносителем. В рабочем режиме этот кран должен быть закрыт. Такая система останется полностью работоспособной.

Движение охлажденного теплоносителя

Одним из заблуждений является то, что в системе с естественной циркуляцией охлажденный теплоноситель вверх двигаться не может. 
С эти я тоже не согласен. Для циркуляционной системы понятие верх и низ весьма условное. На практике, если обратный трубопровод на каком-то участке поднимается, то где-то он на эту же высоту опускается. При этом гравитационные силы уравновешиваются. Трудность только в преодолении местных сопротивлений на поворотах и линейных участках трубопровода. Все это, а также возможное остывание теплоносителя на участках подъема должно учитываться в расчетах. Если система грамотно рассчитана, то схема, представленная на рисунке ниже, имеет право на существование. К слову сказать, в начале прошлого века такие схемы достаточно широко применялись, несмотря на свою слабую гидравлическую устойчивость.

Расположение подающего трубопровода

Часто можно услышать мнение, что в гравитационных системах отопления подающий трубопровод должен проходить над всеми ярусами радиаторов. С моей точки зрения, это совсем не обязательно. Расположение подающего трубопровода с надлежащим уклоном под потолком верхнего этажа или на чердаке позволит удалить воздух из системы через открытый расширительный бак. Но проблему удаления воздуха можно решить и с помощью автоматического воздухоотводчика или отдельной воздушной линии.

Расположение радиаторов

Говорят, что при естественной циркуляции теплоносителя, радиаторы, в обязательном порядке, должны располагаться выше котла. 
Данное утверждение справедливо только тогда, когда отопительные приборы расположены в один ярус. Если количество ярусов два и более, радиаторы нижнего яруса можно располагать и ниже котла, что, обязательно должно быть проверено гидравлическим расчетом.

В частности, для примера, показанного на рисунке ниже, при H = 7 м, h1 = 3 м, h2 = 8 м, действующее циркуляционное давление составит:

g · [H · (ρ2 – ρ1) – h1 · (ρ2– ρ1) – h2 · (ρ2– ρ3)] = 9,9 · [ 7· (977 – 965) – 3 · (973 – 965) – 6 · (977 – 973)] = 352,8 Па.

Здесь:

ρ1 = 965 кг/м3 – плотность воды при 90 °С;

ρ2 = 977 кг/м3 – плотность воды при 70 °С;

ρ3 = 973 кг/м3 – плотность воды при 80 °С.

Получившееся циркуляционного давления достаточно для работоспособности приведенной системы.

Гравитационное отопление — замена воды на антифриз

Где-то прочитал, что гравитационное отопление, рассчитанное на воду, можно безболезненно перевести на антифриз. Хочу вас предостеречь от таких действий, так как без надлежащего расчета такая замена может привести к полному отказу системы отопления. Дело в том, что растворы на гликолевой основе обладают значительно большей вязкостью, чем вода. Кроме того, удельная теплоемкость этих жидкостей ниже, чем у воды, что потребует, при прочих равных условиях, повышения скорости циркуляции теплоносителя. Эти обстоятельства существенно увеличивают расчетное гидравлическое сопротивление системы, заполненной теплоносителями с низкой температурой замерзания.

Зачем нужен обратный клапан?

В процессе работы внутри отопительной системы появляется гидравлическое давление, которое может быть неодинаковым на различных ее участках. Причины такого явления самые разные.

Чаще всего это неравномерное остывание теплоносителя, ошибки в проектировании и сборке системы или ее прорыв. Результат всегда один: направление основного потока жидкости изменяется, и он поворачивается в противоположную сторону.

Это чревато весьма серьезными последствиями вплоть до выхода котла, а то и всей системы, из строя, что потребует в дальнейшем значительных затрат на ремонт.

По этой причине специалисты настойчиво рекомендуют ставить обратный клапан. Устройство способно пропускать жидкость только в одном направлении. При появлении обратного потока срабатывает запорный механизм, и отверстие становится непроходимым для теплоносителя.

Таким образом, прибор способен контролировать поток жидкости, пропуская его только в одном направлении.

Принцип действия обратного клапана весьма прост. Он пропускает жидкий теплоноситель в заданном направлении и перекрывает путь, когда он пытается двигаться в противоположном

Для нормальной работы системы нужно, чтобы устройство не создавало дополнительного давления, и беспрепятственно пропускало двигающийся к радиаторам теплоноситель. Поэтому крайне важно грамотно подобрать изделие.

Разновидности обратного клапана

Несмотря на то что все устройства такого типа выполняют одну задачу, они имеют конструкционные и, следовательно, эксплуатационные отличия. Рассмотрим подробнее каждый из этих видов.

Приспособления дискового типа

Отличительной особенностью изделия является наличие дискового затвора. Это пластиковый или металлический элемент, размеры которого позволяют ему полностью перекрыть поток теплоносителя, если он начнет двигаться в противоположном направлении.

Диск соединяется со стальной пружиной. При прямом движении жидкости она находится в сжатом состоянии. При изменении направления распрямляется и сдвигает диск с места, перекрывая тем самым трубу.

Конструкция клапана включает также уплотнительную прокладку, которая дает возможность затворному механизму максимально плотно сидеть на посадочном месте. Поэтому в исправных приборах течь исключена.

Дисковые устройства широко применяются при обустройстве бытовых отопительных систем, поскольку имеют значимые преимущества:

  1. Компактность. Размеры изделий и их вес невелик, что дает возможность устанавливать их на любые системы.
  2. Регулярное техническое обслуживание прибору не требуется.
  3. Стоимость устройства невысока.

Из значимых недостатков стоит отметить непригодность к ремонту. Поэтому вышедшие из строя клапаны сразу же заменяются на новые.

Значимый недостаток дисковых устройств – значительное гидравлическое сопротивление. На схеме хорошо видно, как оно возникает. Жидкости приходится преодолевать препятствие в виде запорного диска

И еще один минус – значительное гидравлическое сопротивление, создающееся устройством. Для некоторых систем, например, с геотермальным тепловым насосом, это может быть критично. Со временем дисковый затвор покрывается слоем минеральных отложений, что ведет к поломке устройства.

Стандартные дисковые клапаны при закрытии создают некоторые ударные нагрузки. На их работоспособности и техническом состоянии это никак не отражается, но в системе возникает гидроудар. Что для нее нежелательно.

Лишены этого недостатка дисковые устройства с дополнительным механизмом, позволяющим закрывать отверстие максимально плавно. Их стоимость выше, чем у стандартных аналогов.

Шаровые обратные клапаны

В качестве затвора в устройствах этого типа используется металлический шар. Его изготавливают из алюминия, стали и других металлов. Для продления срока эксплуатации элемент покрывается слоем резины.

Работает такой затвор следующим образом: когда теплоноситель движется через корпус устройства в нужном направлении, он поднимает шарик, который движется в верхний отсек клапана.

Клапан шарового типа оказывает минимальное гидравлическое сопротивление, поэтому широко используется в самых разных отопительных системах. Еще один плюс – длительный срок службы

Как только направление движения изменяется или поток прекращается, шар немедленно опускается и перекрывает трубу. Таким образом, движение жидкости в противоположном направлении становится невозможным.

К числу достоинств этих клапанов относят:

  • надежность — конструкция не включает трущихся или движущихся систем, что значительно снижает возможность поломки и позволяет работать в любом положении;
  • ремонтопригодность — верхняя часть корпуса клапана оснащается съемной крышкой, которая обеспечивает легкий доступ к внутренней части конструкции;
  • невысокое гидравлическое сопротивление.
Читайте также  Оригами из бумаги для начинающих: своими руками, пошагово, схемы, видео

Рассматривая недостатки, стоит отметить довольно большой рабочий диаметр. По этой причине использовать их в бытовых трубопроводах малых сечений невозможно.

Шаровые клапаны капризны при установке, что обусловлено конструкционными особенностями. При горизонтальном монтаже их обязательно ставят крышкой вверх, иначе затвор не сможет подняться, чтобы пропустить поток воды. Исходя из этих же соображений при вертикальной установке нужно строго следить за тем, чтобы жидкость двигалась строго вверх.

Не смогут шаровые клапаны нормально функционировать и в трубопроводах с малым давлением. Поскольку минимальное значение, при котором сфера, запирающая проходное отверстие, поднимается, составляет обычно 25 бар.

Лепестковая разновидность затвора

Затвором для клапана такого типа служит тонкая пластина из стали. Она закрепляется на конструкции из шарниров, которая обеспечивает ей возможность двигаться.

Советуем к прочтению:   Мини-печь своими руками: схемы двух моделей из кирпича и облицовка чугунной топки

Лепестковый обратный клапан двустворчатого типа очень надежен, выдерживает большое давление. Но при этом оказывает серьезное гидравлическое сопротивление, поскольку поворотная ось створок располагается непосредственно по центру проходного отверстия

Различают две разновидности лепестковых устройств. Одностворчатые или поворотные оснащаются одной пластиной, которая может вращаться вокруг оси.

Когда теплоноситель движется в заданном направлении, он поднимает створку, открывая тем самым проходное отверстие. При изменении направления потока пластина опускается. Это может осуществляться как с помощью пружины, так и без нее.

Двустворчатые клапаны сконструированы немного иначе. Они имеют две запирающие пластины, закрепленные на поворотной оси и располагающиеся по центру проходного отверстия.

Теплоноситель, перемещающийся по отопительному контуру, открывает обе створки двухстворчатого обратного клапана, а при изменении направления ее движения пружины захлопывают пластины

Преимуществами использования этих клапанов считаются следующие:

  • некоторые модели гравитационных клапанов могут работать без пружин, что позволяет использовать их в самотечных системах;
  • относительно невысокая стоимость устройств.

Из недостатков стоит отметить довольно высокое гидравлическое сопротивление. Особенно это актуально для двустворчатых моделей — поворотная ось находится непосредственно по центру проходного отверстия, что является значительным препятствием для движущейся жидкости.

По этой причине двустворчатые клапаны используются исключительно в системах с высоким давлением.

Оборудование подъемного типа

Подъемные клапаны оборудуются золотником, который может свободно двигаться относительно вертикально расположенной оси. На пропускном отверстии находится посадочное седло, где располагается золотник.

При подаче жидкости сила ее давления поднимает затвор, и он перемещается по оси, открывая отверстие для движения теплоносителя. Как только давление потока ослабеет или он изменит свое направление, золотник опустится в посадочное седло.

Подъемный обратный клапан устанавливается только вертикально. Иначе давления жидкого теплоносителя будет недостаточно, чтобы поднять запорный механизм

Достоинствами этих приспособлений считаются:

  1. Надежность. Оборудование имеет довольно простую конструкцию, что позволяет ему работать с минимальным риском поломки.
  2. Невысокая чувствительность к качеству теплоносителя.
  3. Возможность проведения ремонта. Для этого в верхней части корпуса прибора расположена съемная крышка.

Из недостатков нужно отметить ограничения в установке. В силу особенностей конструкции их можно монтировать только в строго вертикальном положении.

Использование открытого расширительного бака

Практика показывает, что в открытый расширительный бак необходимо постоянно доливать теплоноситель, так как он испаряется. 
Согласен что, это действительно большое неудобство, но его можно легко устранить. Для этого можно использовать воздушную трубку и гидравлический затвор, устанавливаемый, ближе к нижней точке системы, рядом с котлом. Данная трубка служит воздушным демпфером между гидравлическим затвором и уровнем теплоносителя в баке. Поэтому, чем больше ее диаметр, тем меньше будет уровень колебаний уровня в бачке гидрозатвора. Особо продвинутые умельцы умудряются закачивать в воздушную трубку азот или инертные газы, тем самым предохраняя систему от проникновения воздуха.

Использование циркуляционного насоса в гравитационном отоплении

В разговоре с одним монтажником я услышал, что насос, установленный на байпасе главного стояка, не может создать эффект циркуляции, так как установка запорной арматуры на главном стояке между котлом и расширительным баком запрещена. 
Поэтому можно поставить насос на байпасе обратной линии, а между врезками насоса установить шаровой кран. Такое решение не очень удобно, так как каждый раз перед включением насоса надо не забыть перекрыть кран, а после выключения насоса – открыть. При этом установка обратного клапана невозможна из-за его значительного гидравлического сопротивления. Чтобы выйти из этого положения, мастера пытаются переделать обратный клапан в нормально открытый. Такие «модернизированные» клапаны создадут в системе звуковые эффекты из-за постоянного «хлюпанья» с периодом, пропорциональным скорости теплоносителя. Могу предложить другое решение. На главном стояке между врезками байпаса устанавливается поплавковый обратный клапан для гравитационных систем. Поплавок клапана в режиме естественной циркуляции открыт и не мешает движению теплоносителя. При включении насоса на байпасе клапан перекрывает главный стояк, направляя весь поток через байпас с насосом.

Принцип действия ГСО

Гравитационная система отопления — это не что иное, как система отопления с естественной циркуляцией теплоносителя. Другими словами, вода, обогревающая жилище, по трубам движется самотеком.

Она простая в монтаже, к тому же не требует установки дорогостоящего оборудования.

Вода, нагретая в котле, поступает по стояку к отопительным приборам, отдает им тепло, и уже остывшая возвращается снова в котел. Поскольку плотность и масса остывшей воды больше, то она вытесняет горячую воду из котла в систему. Процесс движения теплоносителя в трубах повторяется. Так будет происходить до тех пор, пока работает нагреватель – котел.

Монтажная схема

На рисунке представлена упрощенная схема монтажа самотечной системы отопления частного дома.

Основными элементами являются:

  • котел отопления;
  • приборы нагревания (радиаторы);
  • трубы;
  • компенсационный (расширительный) бак.

В реальности она должна выглядеть примерно так. Котел устанавливается в самой нижней точке дома на заранее спроектированном месте. От него выводится стояк на самую верхнюю точку. Лучше, если она будет на чердаке. Разгонный стояк должен соединяться с компенсационным или расширительным баком.

Если бак открытого исполнения, то на нем устанавливают переливную трубу, которая выводится как можно ближе к канализационной системе. Когда бак делают закрытым, то его можно располагать в котельной на обратке (В таком исполнении ставится предохранительный клапан сброса). На бак открытого исполнения необходимо устанавливать автовоздушник и от него сделать отпуск. К отпуску приваривается розлив системы.

Виды обратных клапанов

Все виды устройств несут одну и ту же функцию, но могут иметь разную конструкцию, разные исполнительные органы и приводиться в действие разными физическими принципами.

Исходя из конструкции и принципа срабатывания, различают такие основные виды, как

  • дисковые, или тарельчатые;
  • шаровые;
  • лепестковые;
  • двустворчатые.

Каждый вид имеет свои преимущества и недостатки и преимущественную область применения.

Тарельчатый

Рабочий орган, или затвор клапана представляет собой диск, прикрепленный к подпружиненному штоку. При нормальном направлении потока пружина сжимается давлением жидкости и затвор открывается. Как только напор жидкости падает или она стремится течь в обратную сторону, пружина разжимается и прижимает тарелку к седлу, и затвор закрывается.

Рисунок 2. Конструкция дискового затвора

На тарелке (реже- на седле) размещают резиновую или силиконовую уплотнительную прокладку, обеспечивающую максимально прилегание диска к седлу и исключающую просачивание жидкости.

Рисунок 3. Принцип действия тарельчатого обратного клапана

Такие устройства завоевали заслуженную популярность при проектировании и комплектации бытовых систем отопления. Они обладают такими достоинствами, как:

  • Простота устройства. Оно состоит из 5 деталей и не требует высокой точности при изготовлении.
  • Надежность. Благодаря простоте конструкции такие устройства работают годами без замены.
  • Не нуждаются в техобслуживании.
  • Доступность цены.

Есть и таких приборов и минусы:

  • Высокое сопротивление потоку в открытом состоянии.
  • Подвержены выпадению минеральных отложений на диск и седло. Это приводит к неисправности.
  • Низкая ремонтопригодность. При нарушении в работе весь прибор меняют на новый.
  • При открытии создают гидравлический удар. Это не вредит самому устройству, но может ускорить износ других чувствительных к динамическим нагрузкам агрегатов, таких, как тепловые насосы.

Есть специальные конструкции тарельчатых затворов, оснащенных устройством плавного открывания. Но стоят они заметно дороже.

 Шаровой, или гравитационный

В гравитационном обратном клапане для систем отопления главным рабочим органом, перекрывающим поток воды, служит металлический шар. Для улучшения прилегания шар покрывают тонким слоем упругого пластика или резины. Когда поток жидкости идет через устройство в заданном направлении, он силой своего давления приподнимает шар над седлом и открывает просвет.

Рисунок 4. Шаровой клапан

Если напор потока падает или направление движения потока жидкости меняется на обратное, шар под действием силы тяжести падает на седло, прижимается к нему и перекрывает просвет. Чем больше жидкость пытается течь в обратном направлении, тем сильнее прижим и надежнее перекрытие.

Плюсы такой конструкции следующие:

  • Низкое сопротивление потоку в открытом положении.
  • Максимальная надежность. Устройство не содержит трущихся элементов и практически не изнашивается в открытом положении.
  • Высокая ремонтопригодность. Съемная крышка позволяет легко очищать камеру и рабочие элементы прибора и заменять шарик при необходимости.

К минусам относятся такие факторы, как:

  • Большие диаметр.
  • Высокое рабочее давление.
  • Необходимость строгого соблюдения ориентации устройства при монтаже. В противном случае шар не поднимется и не откроет просвет.

Высокие требования к монтажу и к рабочему давлению ограничивают использование такой арматуры в домашних системах отопления.

 Лепестковый

В качестве затвора используется стальная или латунная пластина. Она закрепляется на подпружиненной оси, перпендикулярной направлению движения жидкости

Рисунок 5. Межфланцевый лепестковый затвор

Принцип работы поворотного клапана прост. При движении жидкости в основном направлении сила напора поворачивает затвор, преодолевая сопротивление пружины. При падении давления или обращении потока пружина ставит затвор поперек трубы, перекрывая ее. Существуют конструкции и без пружины. В них заслонка возвращается на место подл действием силы тяжести.

У такой конструкции есть свои достоинства:

  • Низкая цена.
  • Малое гидравлическое сопротивление в открытом виде.
  • Высокая чувствительность и малое время срабатывания.

К недостаткам относят наличие движущихся и трущихся частей. Это ведет к их неминуемому износу и ремонту либо замене.

Двустворчатый

Двустворчатые клапаны – это разновидность лепестковых их ось расположена точно посередине трубы, и два полудиска-лепестка могут становиться вдоль потока, открывая затвор, либо под действием пружин располагаться поперек потока, перекрывая его.

Рисунок 6. Схема действия двухстворчатого клапана

Такие клапана отличаются чрезвычайно быстрым срабатыванием, но создают значительное сопротивление потоку. Они применяются в средних и крупных отопительных системах с высоким рабочим давлением.

Подъемный

По принципу действия клапан близок к дисковому, но отличается от него тем, что тарелка и подпружиненный шток расположены не вдоль, а перпендикулярно потоку жидкости.

Рисунок 7. Схема действия и разрез подъемного клапана

Сила давления потока приподнимает тарелку, при этом освобождается просвет для движения жидкости в заданную сторону. Если давление падает или поток пытается повернуть вспять, тарелка под действием пружины опускается и прижимается к седлу, перекрывая просвет.

К преимуществам такой конструкции относят:

  • Надежность обеспечивается минимальным числом движущихся деталей и простотой устройства.
  • Низкая чувствительность к чистоте жидкости, как механической, так и химической.
  • Ремонтопригодность. Через верхнюю крышку можно очищать камеру и заменять неисправные детали.

Недостатком считают необходимость монтажа строго в горизонтальном положении. Это делает клапан неприменимым для вертикальных отрезков трубопроводов. Конструкция подходит для систем с естественной циркуляцией.

область применения.

Область применения той ил иной конструкции определяется сочетанием ее конструктивных свойств, эксплуатационных характеристик и требований к установке. Подбирать арматуру для домашней системы отопления лучше с помощью квалифицированного и опытного инженера, способного выполнить необходимые оценки параметров и провести расчеты.

Кроме внутреннего устройства, обратные клапана различаются также и по способу присоединения к трубам.

Муфтовые

Снабжены резьбовыми муфтами с двух сторон, монтируются с помощью резьбовых фитингов. Устройство может поставить мастер с минимальными навыками, однако оно не выдерживает высокого давления.

Рисунок 8. Муфтовое подключение дискового затвора

Диаметр редко превышает два дюйма (50 мм). Поэтому область применения обычно ограничена дисковыми затворами в частных домах и квартирах.

Фланцевые

С двух сторон корпуса отлиты фланцы с отверстиями. Аналогичные фланцы привариваются к трубопроводу, и через прокладки корпус притягивается болтами и гайками. Такое соединение существенно прочнее резьбового, и может выдерживать высокое давления.

Область применения таких соединений- магистрали среднего и большого диаметра. Наиболее популярными стали шаровые затворы.

Рисунок 9. Фланцевое соединение

Межфланцевые

Такой способ крепления предусматривает установку клапана между двух фланцев, приваренных к трубопроводу.

Рисунок 10. Межфланцевое крепление лепесткового клапана

Способ отличается высокой надежностью и проще в установке. Вес и габариты таких устройств меньше, чем у фланцевых. Крепление также может выдерживать высокое давление. Применяется на магистральных трубопроводах

Если требуется повышенная надежность, то корпусе устройства предусматривают сквозные отверстия, через них и оба фланца пропускаются сквозные шпильки, на которых с двух сторон затягиваются гайки.

Сварные

Выпускаются также и клапаны, рассчитанные на сварное соединение. С двух сторон у них торчат патрубки, которые при монтаже можно обрезать под размер и приварить к трубам магистрали.

Такой вид неразъемного соединения отличается максимальной прочностью, однако в случае демонтажа прибора придется приваривать дополнительный кусок трубы. Так выпускаются тарельчатые и лепестковые затворы.

Материал

Материал, из которого изготовлен корпус детали затвора, влияет на его прочность, коррозионную стойкость и срок службы:

  • Нержавейка. Мало подвержена коррозии, может применяться в активных средах и при высоких температурах. Используется на трубах до 40 см в диаметре. Отличается высокой ценой.
  • Латунь. Дешевле нержавейки, имеют высокую коррозионную стойкость. Прочность заметно ниже, но вполне достаточная для бытовых систем
  • Чугун. Оливки из чугуна имеют высокую прочность и низкую цену, но отличаются большими габаритами и массой. Используются в тех местах, где вес и размер большого значения не имеют. Из-за особенностей технологии литья, минимальный размер- 4 см. В частных системах практически не применяются.
  • Пластик. Такие изделия дешевы, но не отличаются высокой долговечностью и теплостойкостью. Лучше применять приборы с металлическими деталями.

Рисунок 11. Затвор с металлическими деталями дольше прослужит

Несмотря на большую цену таких клапанов, их имеет смысл использовать. Они обеспечат заметно больший срок бесперебойной работы и не заставят разбирать систему для ремонта посреди отопительного сезона.

Монтаж

Для увеличения нажмите

При остановке выбора на гравитационной системе отопления в первую очередь необходимо ее спроектировать. Пожалуй, это единственный момент, когда своими руками ничего невозможно сделать.

Читайте также  Преимущества тротуарной плитки

Эту часть работы необходимо поручить специалистам-теплотехникам. А чтобы система имела эстетический вид, к проектированию желательно привлечь еще и дизайнера. Когда их работа будет выполнена, расчеты произведены, схемы нарисованы, можно приступать непосредственно к монтажу.

Для начала нужно выбрать трубы для отопления. Диаметры и длина уже известны из проекта, осталось выбрать материал. Предпочтение лучше отдать трубам из полипропилена . Положительных сторон у них очень много. Это и малый вес, простота соединения, высокая антикоррозийная устойчивость, высокая шумоизоляция, устойчивость к размораживанию.

Советуем к прочтению:   Трубы для систем отопления: выбор материала

Все перечисленные параметры идеально подходят для ГСО. Остальные приборы отопления приобретаются, исходя из возможностей и предпочтения, по показателям, не выходя за рамки проекта.

При монтаже системы предпочтение отдается двухтрубным системам отопления. Это значит, что при монтаже необходимо делать два трубопровода – подающий и обратный.

В этом случае подающая магистраль (с горячей водой) размещается под потолком, а обратная на полу или в подвале.

Если необходимо сделать теплый пол, то придется делать коллекторную врезку. В этом случае каждый контур системы можно запитать через свой регулятор температуры, что создаст дополнительные удобства, но и несколько усложнит систему в целом. Подающий коллектор устраивается в самой верхней точке, желательно на чердаке. При этом нужно не забыть о его утеплении, кстати, как и всего чердака.

Теперь можно приступать к монтажу системы. Начинать нужно с котла подогрева воды. Выдерживая вертикальность как можно точнее, от него выводится на верх труба, которая соединяется с компенсационным баком. Сразу же ее нужно хорошо теплоизолировать. В нижней трети бака врезается труба горячего контура. Ее соединяют с разводкой.

В самом верху бака необходимо врезать переливную трубу, сообщающуюся с канализацией. По ней будут уходить излишки воды в системе.

Далее необходимо проложить трубопровод к приборам обогрева (радиаторам). После выполнения этих работ можно заняться прокладкой обратки – магистрали, по которой уже холодная вода будет возвращаться в котел. Когда все соединения будут завершены, в систему можно заливать воду. При отсутствии подтекания воды из мест соединения, система запускается в работу.

Такая система отопления без труда справляется с обогревом небольшого двухэтажного коттеджа со всеми бытовыми помещениями. Таким образом, из всех типов системы предпочтение желательно отдать двухтрубной.

Усовершенствование

Для значительного улучшения работы системы в нее дополнительно устанавливают циркуляционный насос.

Он позволяет в разы увеличить скорость прохождения воды по трубам и приборам отопления. В результате повышается КПД всей системы, становится намного теплее в доме.

Кроме того, по отзывам специалистов, наличие насоса в системе с водяным подогревом пола крайне желательно. При движении теплоносителя по трубам самотеком, циркуляционное давление в системе низкое. Отсюда и ограничения на обогреваемую площадь. При установке насоса этот недостаток устраняется полностью.

Преимущества и недостатки ГСО

Гравитационная система отопления становится все более востребованной при отоплении небольших одно-двухэтажных загородных домов.

Широкое распространение она получила, благодаря ряду преимуществ, присущих только ей.

В первую очередь к ним относятся:

  • высокая экономичность;
  • надежность работы;
  • простота обслуживания и ремонта.

Экономия от такой системы отопления бросается в глаза еще на подготовительном этапе. В системе нет подкачивающих насосов. Экономия на покупке насосов и электроэнергии, которую они расходуют, налицо. Сама система очень простая по устройству, значит дорогостоящие ремонты обойдут ее стороной. Эти два аспекта уже дадут значительную экономию.

Гравитационная система отопления способна работать без поломок в течение 40-50 лет. Это обуславливается тем, что в ней нет вибрации от насосов, и долговечностью материалов, которые в ней используются. Аккуратное, бережное отношение и своевременное обслуживание могут увеличить эти цифры.

К недостаткам этой системы отопления, пожалуй, можно отнести затраты на топливо (газ, уголь, дрова). К сожалению, совсем бесплатным может стать только костер в лесу.

Отопительные системы с естественной циркуляцией устанавливаются в небольших 1-2 этажных домах. Длина труб по горизонту должна быть не более 30 метров, иначе функционирование системы может прекратиться. Это связано с низким циркуляционным давлением. При установке подпитывающего насоса длина труб может быть намного увеличена.

Выбирая схему отопления частного дома, необходимо получить развернутую консультацию по этому вопросу у специалистов-теплотехников. В противном случае появится возможность вложить деньги, смонтировать систему отопления, но при этом ожидаемого комфорта можно не получить.

Смотрите полезное видео, в котором специалист разъясняет особенности расчета гравитационной системы отопления:

Принцип работы гравитационной системы отопления.

ГСО — наиболее архаичная система водяного отопления. Впервые ее применили в первой половине 19 века для обогрева оранжерей. Физический принцип ее действия основывается на том, что разогретая жидкость расширяется и меняется ее плотность (жидкость становится «легче»). Внутри котла происходит разделение по плотности — нагретый теплоноситель поднимается по подающей магистрали, а холодный стремится вниз по обратной в сторону котла. Из-за эффекта непрерывности струи начинается круговое движение жидкости — циркуляция. Скорость циркуляции в ГСО зависит от разницы уровней (ниже на рисунке обозначено как H) центра нагрева (котла) и центра охлаждения (радиаторов). Чем больше разница уровней, тем больше будет скорость жидкости внутри системы.

Как устроена гравитационная система отопления.

Устроена ГСО достаточно просто. Чтобы не томить вас лишними словами сразу перейдем к рисунку:

На рисунке изображена двухтрубная гравитационная система (ранее я уже писал статью про двухтрубные и однотрубные системы рекомендую ее к прочтению). В самой верхней точке системы располагают в классическом варианте расширительный бак открытого типа. От котла вверх уходит подающая труба (на рисунке горячая магистраль), по которой разогретый теплоноситель идет к приборам отопления. В них он остывает и идет обратно в котел по обратной трубе (на рисунке обратная магистраль). В двухтрубной ГСО магистрали прокладываются с соблюдением уклонов. У подающей магистрали уклоны делаются в сторону отопительных приборов, у обратной магистрали уклон идет в сторону котла.

Теперь давайте рассмотрим однотрубный вариант гравитационной системы отопления:

Работает однотрубная ГСО также, как и двухтрубная. Отличием здесь будет наличие разгонного коллектора — специальной трубы в, которой увеличивается скорость теплоносителя под действием силы тяжести. Из-за последовательного прохождения радиаторов, температура теплоносителя снижается от начального радиатора к конечному. Чтобы это компенсировать необходимо увеличивать количество секций у последних радиаторов, а это не всегда возможна из-за ограниченности пространства.

Возможен также вариант ГСО с мембранным расширительным баком вместо открытого. В этом случае желательно, чтобы котел был рассчитан на давление 3 атмосферы, так как придется устанавливать группу безопасности на подающую магистраль. Предохранительный клапан в стандартной группе безопасности как раз рассчитан на 3 атмосферы. Если же ваш котел рассчитан на открытую систему (на давление 1 — 1,5 атм), то при установке мембранного бака и стандартной группы он может выйти из строя. Мембранный расширительный бак может быть расположен в любом удобном месте ГСО, а в верхней точке системы необходимо установить воздухоотводчик.

Давайте двигаться дальше. Поговорим о том, как рассчитывать гравитационную систему и как выбирать диаметр труб для нее.

Расчет параметров гравитационной системы отопления.

Если вы собрались сделать гравитационную систему отопления, то вам необходимо сделать хотя-бы минимум расчетов. А лучше вообще сделать полноценный проект. Это будет идеал и если ваш бюджет потерпит такие траты, то я их весьма рекомендую. Возможно уже на этапе проекта инженер выявит возможные сложности в реализации и вам удастся избежать переделок. Итак, давайте начнем рассматривать формулы!

Первая формула, которая нам понадобится:

pниж = pвер + ρgh

Расшифровывается она следующим образом:

  • pниж — давление на нижнем уровне.
  • pвер — давление на верхнем уровне.
  • ρ — плотность жидкости.
  • g — ускорение свободного падения 9,8 м/с².
  • h — разность высот между уровнями.

По этой формуле определяется гидростатическое давление в системе отопления. Из нее следует очевидный вывод, что давление в системе будет тем больше, чем больше ее высота. Но теплоноситель (в частном случае вода) циркулирует по ГСО  и этот момент учитывает равенство Бернулли, которое выглядит так:

p =  (ρv²/2) + ρgh

Уравнение Бернулли показывает, что полное давление зависит не только от высоты, но и от скорости движения жидкости в системе. Однако, вклад гидродинамического давления в полное значительно меньше, чем гидростатического (менее 5%) поэтому им пренебрегают для простоты расчетов. Как известно, циркуляция в ГСО происходит из-за разности давлений, создаваемых горячей и холодной водой. Эта разность называется естественным циркуляционным давлением и вычисляется по следующей короткой и простой формуле:

Δp = pхол — pгор =  gh(ρхол — ρгор).

Расшифровывается это так:

  • ρхол — плотность холодной воды.
  • ρгор — плотность горячей воды.
  • Δp — естественное циркуляционное давление.

Плотности воды при определенных значениях температуры являются справочными величинами, которые просто узнать из справочников. Эта формула подходит для расчета естественного циркуляционного давления в одноэтажном доме, где имеется один центр охлаждения. в двухэтажном доме таких центров будет уже 2 и формула примет следующий вид:

Δp = g〈h1(ρ1 — ρг) + h2(ρ2 — ρг)〉,

где:

  • h1, ρ1 — уровень центра охлаждения плотность воды на первом этаже.
  • h2, ρ2 — уровень центра охлаждения плотность воды на втором этаже.

После расчета естественного циркуляционного давления необходимо рассчитать расход воды. Делается это следующим образом:

G = Q/(C•Δt)

Расшифровка здесь такая:

  • G — расход теплоносителя кг/сек.
  • Q — количество теплоты, генерируемое котлом.
  • С — удельная теплоемкость.
  • Δt — разность температур между горячим и остывшим теплоносителем.

Для наглядности предлагаю посмотреть короткое видео с примером расчета ГСО:

Выбор труб для гравитационной системы отопления.

При выборе труб нам необходимо, чтобы они обеспечивали необходимый расход воды, а естественного циркуляционного давления должно хватать для компенсации потерь на трение о стенки и преодоление местных сопротивлений (тройники, отводы, вентиля и так далее). Падение давления, вызванное трением определяется по равенству Дарси Вейсбаха:

Здесь:

  • ΔP — падение давления на участке трубопровода.
  • λ — коэффициент потерь на трение по длине участка. Табличная величина.
  • L — длина участка.
  • D — диаметр трубы на участке.
  • V — скорость жидкости в трубе.
  • ρ — плотность жидкости.

Общие потери давления в системе будут определяться как сумма потерь на всех участках труб и местных сопротивлениях (потери в местных сопротивлениях находятся по формуле ΔPарматура = ξ*(v²ρ/2), где ξ — табличные коэффициенты) . Об этом я писал в своей статье, посвященной гидравлическим расчетам. Для того, чтобы появилась циркуляция, естественное давление циркуляции должно превысить общие потери давления в ГСО:

Δp ≥ ΔP + ΔPарматура

Для того, чтобы сэкономить время, строители давно разработали специальные таблицы, которым можно быстро выбрать необходимый диаметр трубы. Скажу сразу, что в ГСО металлическая труба начинается от 50-го диаметра, а пластиковые трубы могут использоваться начиная от диаметра 63 мм. Их самым главным недостатком будет их цена. Кроме того, есть определенные сложности с их монтажом. Тут нужно будет привлекать опытного человека, который сможет соблюсти все уклоны и прочие нюансы системы.

Особенности и принципы работы системы

Другими словами, систему называют самотечной или с естественной циркуляцией. При нагреве, вода имеет свойство «расширятся», в этом и кроется весь принцип, по которому происходит циркуляция воды по трубам с помощью создания разного давления по замкнутому контуру. Простым языком, вода нагретая котлом, поступает к батареям, отдает своё тепло и возвращается, вытесняя вновь нагретую часть воды. Это происходит потому, что масса остывшей воды больше, а плотность выше. Такое явление, называется — конвекцией. Процесс в гравитационной системе отопление будет повторяться бесконечное количество раз, пока работает котёл. Придавать воде движения, котлу помогает разгонный коллектор. Он устанавливается вертикально над котлом, как можно выше, иногда на чердак дома, а сам котёл максимально низко по отношению к отопительным батареям. Скорость, которую он будет предавать воде, выталкивая её, напрямую зависит от высоты этого вертикального столба над котлом.

Вся система состоит из таких элементов:

  1. Котел;
  2. Расширительный бак;
  3. Трубы для циркуляции воды;
  4. Радиаторы (батареи);
  5. Гравитационный клапан (если потребуется).

На скорость циркулирующей воды в гравитационной системе отопления влияет ещё один фактор — гидравлическое сопротивление. Он зависит от следующих параметров:

  • от изгибов по контуру циркуляции воды и от их количества. Это напрямую влияет на сопротивление, которое будет встречаться на пути у воды;
  • от диаметра трубы;
  • от количества задвижек, кранов, клапанов и т.д.

Обратите внимание!

Для того, чтобы краны не мешали напору воды свободно двигаться по трубам, они должны быть в открытом состоянии и иметь просвет, который будет максимально близок к диаметру трубы.

Когда вода, постоянно будет находиться в процессе нагревания, определённая её часть будет исчезать под видом испарений. Для этого, в верхней части конструкции установлен расширительный бак. Его функции таковы:

  1. Вывод образовавшегося пара из системы;
  2. Компенсация потерянного объема воды;

Такая схема с использованием расширительного бака, называется — открытой. Она имеет свой недостаток — вода испаряется достаточно быстро. Во избежание подобных ситуаций, используют схему закрытого типа, для больших систем гравитационного отопления. Она отличается от открытой тем, что:

  • в ней нет расширительного бака открытого типа. Вместо него, в том же месте, устанавливается воздухоотводчик, он срабатывает автоматически;
  • схема защищает систему от ржавления труб и установленных на них элементов, за счет вывода кислорода из состава воды;
  • чтобы компенсировать давление остывшей воды, устанавливается расширительный бак с мембраной закрытого типа. Она эластична и играет компенсирующую роль в изменении гравитационного давления в замкнутом контуре.

Монтаж

После того, как выбор пал на систему гравитационного отопления, надо приступать к процессу проектировки. Ни в коем случае, не стоит браться за это самостоятельно. Только специалист-теплотехник сможет надлежащим образом оценить обстановку и составить проект правильно, с учетом всех тонкостей. Он производит расчеты всех параметров системы и вычислит гидравлические показатели, которые скажутся на выборе диаметра будущего трубопровода, это лишь небольшая часть его работы. Если для клиента имеет значение внешний вид системы, приглашают дизайнера.

Какие трубы использовать?

Длина и диаметр труб, будет известен по окончанию проекта. Остается определиться с материалом. Для монтажа используют стальные трубы, медные, из нержавейки и полипропилена. У последнего, есть ряд преимуществ перед остальными. Это легкий вес материала, еще он удобен в процессе установки, обладает высокой шумоизоляцией, антикоррозийным эффектом и устойчивостью к размораживанию.

Читайте также  Маргарита Мамун впервые стала мамой

Важно!

При установке труб из полипропилена, обращайте внимание на температуру, максимум которой, характерен для данной трубы. Важную роль сыграет армирующий слой, который поможет сохранить первоначальную форму труб и защитит от воздействия высоких температур.

Но, обратную часть трубы, входящую в котел, советуют ставить из стали. Своим материалом, она обеспечит снижение температуры воды и поспособствует уменьшению гидравлического сопротивления.

Советуем к прочтению:   Заправка фреоном кондиционера: как заменять фреон в бытовых или промышленных кондиционерах

Виды гравитационной системы отопления

Существует два вида системы гравитационного отопления:

  1. Однотрубная;
  2. Двухтрубная.

Двухтрубная система является более сложной и предполагает наличие двух контуров. Внутри одного контура, теплоноситель (вода), движется от котла к батареям, а по второму, вода возвращается обратно к котлу. Помните, что этот вид системы, требует более тщательной проектировки. Процесс монтажа, также будет не самым простым, рассмотрим его поэтапно:

  • установка стояка, он будет выполнять основную роль, он проходит от бака к котлу;
  • основной стояк с разводкой, соединяется на уровне 1/3 общей высоты комнаты от уровня пола;
  • труба перелива крепится к расширительному баку, по ней лишняя жидкость уходит в канализацию;
  • для того, чтобы вода уходила обратно в котел, в нижнюю часть батарей, врезаются трубы «обратки».

В одноконтурной системе, основополагающую роль играет желаемое количество радиаторов. От этого зависит объем расширительного бака. Обычно, он заполняется на три четверти от общего объёма.

Стоит постоянно следить за уровнем воды в баке, он не должен быть ниже уровня трубы, по которой идет распределение воды по радиаторам. Это грозит прекращением циркуляции теплоносителя.

Хоть однотрубная система и проста, так кажется только на первый взгляд. Не правильно сделанный проект, повлечет за собой уйму проблем и последствий, доверьте это дело профессионалам.

При проектировке естественной системы, главное внимание стоит уделять равномерному распределению давления по замкнутому контуру и правильной циркуляции теплоносителя.

Рекомендации для данной системы

Для усовершенствования существующей схемы, специалисты могут предложить следующие меры по увеличению КПД:

  1. Установка насоса. Он является циркуляционным и устанавливается на байпас. Его призвание в том, чтобы уменьшить инерционность системы. Если время нагрева будет превышено, насос поможет увеличить скорость хода воды по трубам, для получения требуемой температуры;
  2. Магистральный уклон — для достижения оптимального давления в системе гравитационного отопления.
  3. Снижение изгибов по всей длине трубопровода. Это способствует снижению риска для уменьшения скорости воды по магистрали.
  4. Установка обратного капкана. Он предотвратит возможность движения воды в обратном направлении.

Подогрев пола

Чтобы сделать пол теплым, потребуется коллекторная вырезка. Каждый контур, подключается через индивидуальный регулятор температуры. Это усложнит проект системы в целом, но создаст дополнительный комфорт. В этом случае, установить подающий коллектор надо на чердаке, так как там, самая верхняя точка дома, если чердак не утеплён, обязательно сделайте это. Все эти меры предпринимаются перед монтажом всей системы.

Преимущества и недостатки гравитационной системы отопления

Подводя итог, перечислим основные плюсы, которыми обладает гравитационная система:

  1. Надежность (поскольку система сделана из высокопрочного метала и других надежных материалов, ремонтных работ придется ожидать очень долго, так как элементов, которые подвергаются быстрой порче нет);
  2. Отсутствие зависимости от энергоснабжения;
  3. Отсутствие шумов и вибраций;
  4. Простота эксплуатации.

Казалось бы, минусов и вовсе нет, но они есть, хоть и не значительные:

  1. На первый взгляд вся система довольно проста, но это не относится к финансовым вложениям на её приобретение. Сумма будет достаточно крупной;
  2. Некоторые схемы разводки, предполагают большую разницу температур между батареями;
  3. Если скорость циркуляции будет низкой, есть вероятность того, что расширительный бак и часть системы находящаяся на чердаке замерзнет, поэтому, ранее говорилось об его утеплении.
  4. При первом запуске системы, нагрев всех радиаторов находящихся по всему контуру, займет несколько часов.

Принцип работы гравитационной системы отопления частного дома

Гравитационная система отопления частного дома основана на двух физических принципах. Первый заключается в том, что вещества при разных температурах имеют разную плотность. Второй заключается в том, что давление в системе создается из-за разницы уровней нахождения жидкости, и чем больше разница между верхней и нижней точки, тем выше давление в системе.

Первый принцип гравитационной системы отопления выражается в том, что при нагревании жидкого теплоносителя, и это не обязательно должна быть вода, он меняет свою плотность. Вода в обычном состоянии при температуре 20 градусов имеет плотность большую, чем нагретая до 45 градусов, при нагреве до 80 градусов разница будет такова, что потребуется дополнительный объем для воды. В таком случае теплоноситель одной и той же массы будет занимать разный объем, из-за чего он начинает расширяться и вытесняться за пределы теплообменника. В замкнутом пространстве после начала движения нагретого теплоносителя его место занимает охлажденный теплоноситель. Так под действием нагрева возникает поток, и гравитационная система отопления начинает работать.

Второй принцип работы этой схемы начинает работать с того момента, как только теплоноситель начинает движение. По мере нагрева, у воды или антифриза скорость движения увеличивается, поскольку температура растет быстро и расширение объема заставляет вытеснять жидкость за пределы водяной рубашки котла с большей скоростью. Покидая объем котла, жидкость вырывается по вертикальной трубе к расширительному баку. Достигнув уровня ответвления, жидкость заполняет объем трубы и по петле напора устремляется к трубопроводам ведущим к радиаторам отопления, создавая необходимое давление. Учитывая разницу высот между точкой попадания жидкости в петлю напора и нижней точкой слива создавшееся давление дополнительно воздействует на холодный теплоноситель.

Постепенно прогреваясь, система уменьшает разницу температур между холодным и горячим теплоносителем, и таким образом, скорость движения жидкости в системе увеличивается до максимальной и даже может достигнуть 1 метра в секунду.

Самотечное отопление плюсы гравитационной системы отопления

Прежде чем рассматривать положительные качества самотечных систем отопления с естественной циркуляцией воды стоит отдельно рассмотреть все минусы системы. Для многих первый и главный недостаток гравитационной системы отопления является ее архаичность. Действительно, это одна из самых древних систем отопления использующих жидкий теплоноситель. Именно с этой системы были в дальнейшем выработаны одно и двухтрубные схемы разводки, именно эта система использовалась для массовой установки, когда промышленность освоила отопительные твердотопливные а немного позже и газовые котлы отопления. Но с другой стороны гравитационная система отопления является и одной из самых надежных – срок ее эксплуатации составляет в среднем 45-50 лет. То есть ровно столько, сколько времени необходимо, чтобы под действием теплоносителя металлические трубы потеряли свою герметичность.

Второй момент заключается в невысоком коэффициенте полезного действия гравитационной системы отопления. Действительно, сама схема, основанная на естественной циркуляции воды, подразумевает инертность процесса прогрева помещения, пока отопительный котел наберет необходимую мощность, а разница температур между нагретым и охлажденным теплоносителем достигнет минимума, пройдет довольно много времени. Но с другой стороны, даже после того как котел перестанет поддерживать горение процесс циркуляции продолжается, при этом, большой объем воды в системе будет остывать намного дольше чем в системе с принудительной циркуляцией.

Еще одни минус может записать в свой актив гравитационная система отопления из-за своей громоздкости. На практике, при одинаковой площади отапливаемого помещения система с принудительной циркуляцией по сравнению с самотечной, будет занимать гораздо меньше места. В гравитационной системе отопления кроме батарей будут размещаться и трубы верхней разводки, без которых создание необходимого давления жидкости невозможно.

Ну и конечно, вопрос контроля температуры в отдельных радиаторах, и возможность ее регулировки. Гравитационная система отопления в классическом виде с однотрубной схемой постройки не может обеспечить такую функцию из-за невозможности перекрытия отдельного радиатора.

Но с другой стороны, это идеальная система для установки в домах, где нет электричества или постоянно возникают проблемы с его подачей. Гравитационная система отопления способна работать и без электричества, поскольку основной силой движения теплоносителя по системе выступает не циркуляционный насос, а тепловое расширение объема теплоносителя.

Большой объем теплоносителя в системе позволяет обеспечить плавный прогрев помещения. С другой стороны, такой объем нагретого теплоносителя и остывает гораздо медленнее, чем объем системы с принудительной циркуляцией. Особенно ярко это проявляется при отключении электричества или затухании топлива в топке. Система с принудительной циркуляцией  остывает  в 3-4 раза быстрее, чем такая архаическая гравитационная система отопления.

Это свойство часто используется при временном пребывании в доме – просто вместо обычной воды в систему вливается антифриз, и даже после полного остывания ни трубам, ни радиаторам угроза разрыва из-за замерзания воды не грозит.

Ну и конечно, просто необходимо отметить, что такая система просто безотказна в работе. При правильной ее эксплуатации она может прослужить около 50 лет, при этом у нее всего два фактора риска. Первый – это угроза перегрева котла, но и здесь это в основном зависит от человеческого фактора, а не от системы. Второй – это замерзание теплоносителя, но и в этом случае, применение антифриза сводит риск этой аварии практически к нулю.

Упрощенный вариант системы отопления с естественной циркуляцией теплоносителя

При выборе гравитационной системы отопления частного необходимо провести ряд расчетов, чтобы уяснить, насколько система будет обеспечивать прогрев помещения. При нормальных условиях в схеме построения разводки трубопроводов учитываются объемы отдельных помещений и мощность радиаторов отопления, устанавливаемых в них. При установке радиаторов одного номинала гравитационная система отопления будет прогревать помещения неравномерно. Первый, самый ближний к котлу радиатор будет нагреваться больше, а в самом крайнем от котла радиаторе температура теплоносителя будет существенно ниже. Именно поэтому, при подборе отопительных приборов, первые устанавливаются меньшей мощности, а те, которые дальше, должны быть мощнее.

Немаловажно в выборе элементов конструкции правильно подобрать и расширительный бак. При расчете объема расширительного бака принято брать за основу соотношение 1/10. То есть при объеме воды в системе около 250 литров, объем бака должен быть не меньше 25 литров.

Гравитационная система отопления очень требовательна к материалам конструкции. Прежде всего, это касается труб и трубопроводов. Большой объем теплоносителя и низкое давление в системе требуют, чтобы циркуляция осуществлялась с наименьшими потерями, а это возможно, либо в стальных, либо в полипропиленовых трубах. Но и здесь имеются определенные ограничения. Так, стальные трубы должны соединяться либо сварным способом газовой или электросваркой, либо при помощи резьбовых соединений. И если первый вид позволяет обеспечить надежное соединение практически без получения сварного шва внутри трубы, то резьбовой способ может создавать большое количество неровностей внутри трубопровода. Что касается полипропиленовой трубы, то у нее есть один существенный недостаток. Этот недостаток касается способности трубы выдерживать высокие температуры – максимальная температура, которая по утверждению производителей может выдержать такая труба это +95 градусов, что не подходит для трубы устанавливаемой сразу после котла.

Но даже несмотря на все эти предостережения, упрощенная схема гравитационной системы отопления существенно отличается от системы принудительной циркуляции.

В состав такой системы обязательно должны входить:

  • Нагревательный котел ( обязательное условие таких систем это наличие котла с большим объемом водогрейной рубашки);
  • Трубы подачи воды большого диаметра 11/2 дюйма;
  • Расширительный бак емкостью 1/10 объема жидкости в системе;
  • Трубы подачи диаметром 1 дюйм;
  • Радиаторы разного размера для обеспечения равномерного прогрева помещений;
  • Труба обратной подачи;
  • Кран слива жидкости;
  • В качестве приборов контроля в системе устанавливаются термометр и манометр в котле, и краны Маевского в радиаторах.

Как видно, система имеет небольшое количество конструктивных элементов и вполне пригодна для того, чтобы собрать ее самостоятельно.

Основные схемы для отопления домов

Сегодня существует несколько видов гравитационных систем отопления. Наиболее популярна самая простая система с напорной петлей и уклоном подающих трубопроводов и труб обратки. Здесь реализуется схема, при которой теплоноситель циркулирует в естественном режиме, а расширительный бак имеет открытый верх. Недостатком этого вида гравитационной системы отопления выступает ее инертность и сложность в реализации. Сложностью реализации в данном случае понимается необходимость выдерживания всех параметров уклонов труб. Так, после того как будет смонтирована напорная петля разводка труб должна делаться с соблюдением наклона 0,05 градуса в сторону от котла. Этого уклона достаточно чтобы обеспечить начальное движение жидкости. Такой же уклон обеспечивается и при прокладке трубопровода обратки.

 Такие схемы подразумевают однотрубные варианты построения системы охраны. Более совершенные гравитационные системы отопления подразумевают двухтрубную схему прокладки трубопроводов. Но для этого необходимо обеспечить правильную прокладку магистрального трубопровода. Для нормального функционирования такой системы общая длина подающей трубы должна быть около 25 метров, максимальный размер такой трубы может быть 35 метров. Большая длина трубы будет снижать температуру подачи теплоносителя, для ее прокладки потребуется дополнительный уклон, что потребует в проекте предусмотреть дополнительный объем чердачного помещения или объема внутри комнаты.

На что нужно обратить внимание при проектировании гравитационной системы отопления

Основной проблемой эффективной работы гравитационной системы отопления в малоэтажный частных домах выступает неправильное расположение котла и радиаторов относительно друг друга. Одним из важных параметров системы выступает величина циркуляционного напора. Она показывает расстояние от центра отопительного прибора до центра отопительного котла. Чем выше этот показатель, тем эффективнее работа всей системы.

Неэффективность и низкий КПД отопительных котлов как твердотопливных, так и газовых устанавливаемых в гравитационных системах зачастую связан с небольшой разницей в высотах между радиатором и котлом. Так в обычных условиях такой перепад обычно составляет всего 0,2-0,3 метра. Такое положение не дает экономить до 25 % топлива. Большая часть энергоносителей тратится на перегрев жидкости. В тоже время, если увеличить перепад высот на 0,5 метра и довести его до 0,7-0,8 метра, то эффективность повысится на 6-11%, а при перепаде в 2,0 метра появляется возможность сэкономить до 20% энергии. Именно поэтому при проектировании систем отопления гравитационного типа размещение котла планируется в самой нижней точке, чаще всего в подвальном помещении.

Вместе с тем, рассматривая все варианты и способы устройства систем отопления частного дома, несмотря на кажущуюся простоту реализовывать этот проект рекомендуется доверить профессионалам. Опыт и наличие специального оборудования помогут обеспечить быстрый и главное легкий монтаж всего оборудования, сведя к минимуму риск ошибок.

Источники

  • https://otivent.com/sistema-otoplenija-s-estestvennoj-cirkuljaciej
  • http://www.ocenin.ru/gravitacionnoe-otoplenie/
  • https://sovet-ingenera.com/otoplenie/otop-oborudovanie/obratnyj-klapan-dlya-otopleniya.html
  • https://teplo.guru/sistemy/gravitatsionnaya.html
  • https://ZnatokTepla.ru/truby/tehnicheskie-vozmozhnosti-obratnogo-klapana.html
  • https://znayteplo.ru/otoplenie/gravitacionnaya-sistema-otopleniya-vse-chto-nuzhno-o-nej-znat/
  • https://eurosantehnik.ru/gravitacionnaya-sistema-otopleniya-plyusy-minusy-montazh-i-rekomendacii.html
  • https://pechiexpert.ru/bezotkaznaya-gravitatsionnaya-sistema-otopleniya-dlya-chastnogo-doma/

Источник: akak7.ru

Гармония Красоты